Polarization and Ellipsometry|2 Article(s)
Multifunctional geometric phase optical element for high-efficiency full Stokes imaging polarimetry
Yanmeng Dai, Yuquan Zhang, Youpeng Xie, Dapeng Wang, Xianyou Wang, Ting Lei, Changjun Min, and Xiaocong Yuan
Polarization imaging finds applications in many areas, such as photoelasticity, ellipsometry, and biomedical imaging. A compact, snapshot, and high-efficiency imaging polarimeter is highly desirable for many applications. Here, based on a single multifunctional geometric phase optical element (GPOE), a new method is proposed for high-efficiency snapshot imaging polarimetry. With tailored spatially varying orientation of each anisotropic unit cell, the GPOE works highly efficiently as both a spin sorter and a half-wave plate, enabling snapshot retrieving of a full Stokes vector of incident light. The designed GPOE is implemented in the form of liquid crystal fabricated with a photo-alignment technology, and its application in imaging polarimetry is experimentally demonstrated by retrieving full Stokes parameters of a cylinder vector beam. This method can also work in the form of plasmonic or dielectric metasurfaces, enabling ultra-compact polarization detection systems by monolithic integration with other devices such as metalenses.
Photonics Research
  • Publication Date: Aug. 23, 2019
  • Vol. 7, Issue 9, 09001066 (2019)
Conversion between polarization states based on a metasurface
Shuyun Teng, Qi Zhang, Han Wang, Lixia Liu, and Haoran Lv
Transmission of an anisotropic metasurface is analyzed in a polar base relying on the Jones calculus, and polarization conversion from the spatial uniform polarization to the spatial nonuniform polarization is explored. Simple and compact polarization converters based on rectangular holes or cross holes etched in silver film are designed, and polarization conversions from the linear and circular polarization to the radial and azimuthal polarization are realized. Numerical simulations of three designed polarization converters consisting of rectangular holes equivalent to polarizers and quarter- and half-wave plates, exhibit the perfect polarization conversion. The experiment results consistent with the simulations verify theoretic predictions. This study is helpful for designing metasurface polarization converters and expanding the application of a metasurface in polarization manipulations.
Photonics Research
  • Publication Date: Feb. 04, 2019
  • Vol. 7, Issue 3, 03000246 (2019)
Topics